DM4122A 2:1 Combinatorial Mux AND/OR Programmable Logic Gate (Advanced Information) Description The DM4122AD is an ultra-high-speed, 2-to-1 multiplexer that provides high performance and is easy to use for implementing static or dynamic two-to-one multiplexing. Its wide operating frequency range makes it useful in many situations for the interfacing of low-speed devices to high-speed devices. Both static full-rate switch and dynamic 2:1 multiplexer operating modes are supported. The DM4122AD is fabricated using 1-µm HBT GaAs technology and it has been designed using an ECL topology to ensure high-speed operation. Both data inputs (A, B) and control signal (S1) are DC coupled with internal 50-ohm resistors to avoid the need for external impedance matching terminations. The DM4122AD uses SCFL input levels (VIH: 0.0 V, VIL: -0.9 V), and is designed to allow either single-ended or differential data input. AC coupling through an external capacitor is also possible. The output of the DM4122AD is DC coupled with 900-mVpp single- ended amplitude. An on-chip, high-performance output buffer provides an excellent eye diagram up to 12.5 Gb/s RZ output. The DM4122AD combinatorial multiplexer may also be used as an OR- AND gate and the high quality of the output buffer allows it to be used as a 12.5-Gb/s NRZ-to-RZ converter. ### **Features** - ➤Output data rate range: DC to 12.5 Gb/s - ➤900 mVpp typical single-ended output - ➤ Single-ended input sensitivity: >300 mV - ▶1.2 ps jitter RMS - ➤Output rise time (20% 80%): <27 ps - ➤Output fall time (20% 80%): <24 ps - Full SCFL input level compatibility - ➤ 50 ohm matched AC/DC coupled input and outputs, clock input, and selector input - ➤ Differential or single-ended I/O - ➤ Up to 12.5 Gb/s NRS-to-RZ converter, AND/OR logic implementation, static switch, or multiplexer - ➤ Power consumption: 0.715 W # Device Diagram (Advanced Information) ## **Timing Diagram** ## Absolute Maximum Ratings Stresses in excess of those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational section of this document is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. | Symbol | Parameters/conditions | | Max. | Units | |--------|--|------|------|-------| | Vee | Power supply voltage | -5.5 | 0 | V | | VDH | Data/clock input voltage level, high level | -1.2 | 1.2 | V | | VDL | Data/clock input voltage level, low level | -1.2 | 1.2 | V | | Та | Operating temperature range – die | -15 | 125 | °C | | Tstg | Storage temperature | -65 | 150 | °C | ## Recommended Operating Conditions | Symbol | Parameters/conditions | Min. | Тур. | Max | Units | |--------|--|------|-------|-----|-------| | Та | Operating temperature range – die | 0 | | 85 | °C | | Vee | Power supply voltage | | -5.2 | | V | | VDH | Data/clock input voltage level, high level (single ended) | -0.1 | 0.25 | | V | | VDL | Data/clock input voltage level, low level (single ended) | -0.6 | -0.25 | | ٧ | | Vindc | DC input voltage (with DC-coupled input) | -0.3 | 0 | | ٧ | | Vipp | Data/clock input voltage level (single Ended peak to peak) | | 0.5 | | V | (Advanced Information) # Electrical Characteristics - 1. Electrical characteristics at ambient temperature. - 2. In case of single-ended inputs the unused ones must be tied to Vindc which must be set close to the mean value of the used one. For AC single-ended inputs having 0 V mean value, the unused inputs may be left floating. - 3. Output referred to selector rising edge. - 4. Duty cycle 50%. Asymmetrical duty cycle may reduce maximum operating data rate. | Truth table | | | |-------------|-----|--| | S1 | Out | | | Н | Α | | | L | В | | | Symbol | Power store | M: | Т | Man | Units | |---------------|--|-------|-------|-------|-------| | Symbol | Parameters | Min | Тур | Max | Units | | Vee | Power supply voltage | -5.45 | -5.2 | -4.85 | V | | VDH | Data/clock/selector input voltage level, high level (single ended) | -0.5 | 0.25 | 0.5 | V | | VDL | Data/clock/selector input voltage level, low level (single ended) | -1 | -0.25 | 0 | V | | Vindiffp
p | Data/clock/selector input voltage level differential peak to peak | 0.40 | 1.0 | 1.8 | V | | Vindc | DC input voltage (with DC-coupled input) (2) | -0.75 | 0 | 0.25 | V | | VQH | Data output voltage amplitude high | -0.05 | 0 | 0 | V | | VQL | Data output voltage amplitude low | -0.95 | -0.9 | -0.85 | V | | Tr | Output rise time (20% - 80%) | | 27 | | ps | | Tf | Output fall time (20% - 80%) | | 24 | | ps | | Tos1 | S1 to output delay (3) | | | | ps | | Ts1a | Input to S1 time window | | | | ps | | Tba | Data Input time shift | | | | ps | | FMAx | Clock frequency Input | 0 | 12.6 | 13 | GHz | | RMAx | Input data rate (4) | 0 | 6.3 | 6.5 | Gb/s | | RLin | Minimum Input return loss (up to 15 GHz) | | | | dB | | RLout | Minimum output return loss (up to 15 GHz) | | | | dB | | Jpp | Peak to peak jitter | | 10 | | ps | | Jrms | RMS jitter | | 1.5 | | ps | | lc | Power supply current | | 138 | | mA | | Pd | Power dissipation | | 0.715 | | W | (Advanced Information) # Eye Diagram Performance Test board measurement Vee: -5.2 V + 5% = -4.95 Output data rate: 10.7 Gb/s Data input: 900 mVpp SE S1 input 900 mVpp SE Test board measurement static switch Vee: -5.2 V + 5% = -4.95 V Output data rate: 10.7 Gb/s Data input: 900 mVpp SE Test board measurement RZ converter Vee: -5.2 V+ 5% = -4.95 V NRZ input rate: 12.5 Gb/s Data input: 900mVpp SE Clock Input: 900 mVpp SE Test board measurement RZ converter Vee: -5.2 V + 5% = -4.95 V NRZ input rate: 10.7 GHz Data input: 900 mVpp SE Clock input: 900 mVpp SE #### **Disclaimer** DIGIMIMIC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. DIGIMIMIC DOES NOT ASSUME ANY LIABILITY ARISING OUT O THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. (Advanced Information) ## Recommended Operational Setup #### **Bias Conditions** - 1. Connect inputs to a fixed DC value - 2. Apply -5.2 V at Vee - 3. Apply RF signals to the inputs - 4. Tune Vindc for optimal eye diagram in case of single-ended inputs. ## Recommended Test Setup ## DM4122A 2:1 Combinatorial Mux AND/OR Programmable Logic Gate (Advanced Information) # Logic AND Gate Configuration The DM4122AD may be used in place of a logic AND gate by simply feeding one data input and the selector input with the two data streams and setting the unused one to logical "0" (for example using a 300-ohm pull-down to Vee). # Logic OR Gate Configuration The unused input must be fixed at logic "1". ### NRZ-To-RZ Converter The NRZ-to-RZ converter is demanding from a bandwidth point of view. It is basically the AND between input PN data and a clock. (Advanced Information) ## Recommended Chip Mounting ## Pad Positions And Chip Dimensions Chip size: 1500 μ m ±10 μ m x 2500 μ m ±10 μ m edge to edge Chip thickness: 104 µm ±3 µm Pad size: 100 µm x 100 µm RF pad pitch: 150 µm Unlabeled pads are ground and may be left floating ## DM4122A 2:1 Combinatorial Mux AND/OR Programmable Logic Gate (Advanced Information) # Application Information #### **CAUTION: THIS IS AN ESD SENSITIVE DEVICE** Chip carrier material should be selected to have InP compatible thermal coefficient of expansion and high thermal conductivity such as copper molybdenum or copper tungsten. The chip carrier should be machined, finished flat, plated with gold over nickel and should be capable of withstanding 325°C for 15 minutes. Die attachment for power devices should utilize Gold/Tin (80/20) eutectic alloy solder and should avoid hydrogen environment for HBT devices. Note that the backside of the chip is gold plated and it is connected to RF and DC Ground. These InP devices should be handled with care and stored in dry nitrogen environment to prevent contamination of bonding surfaces. These are ESD sensitive devices and should be handled with appropriate precaution including the use of wrist-grounding straps. All die attach and wire/ribbon bond equipment must be well grounded to prevent static discharges through the device. Recommended wire bonding: for Signal input / output connections, use either 3 mils wide and 0.5 mil thick gold ribbon or a pair of 1mil diameter wires with lengths as short as practical allowing for appropriate stress relief (typically 400 +/- 100 um long). For all other connections, a single 1 mil dia wire of appropriate minimum length may be used. ## Product Status Definitions | Datasheet
Identification | Product Status | Definition | |-----------------------------|---------------------------|---| | Advanced Information | Formative or or In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. DIGIMIMIC reserves the right to make changes at any time without notice in order to improve design. | | No Identification
Needed | Full Production | This datasheet contains final specifications. DIGIMIMIC reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not in Production | This datasheet contains specifications on a product that has been discontinued by DIGIMIMIC. The datasheet is printed for reference information only. |